HUBBLE, SPACEX FALCON, MESSENGER and MORE...

By Benjamin Vermette

CANADA’S CONTRIBUTION TO SPACE TELESCOPES

April 24, 1990 saw Space Shuttle Discovery launch from Kennedy Space Center with the school-bus-sized Hubble Space Telescope in its payload. More than five years after the last of five shuttle servicing missions, the NASA community (and the whole scientific community around the world) celebrated Hubble’s 25th anniversary on April 24, 2015.

One hundred and fifty-six thousand gigabytes of scientific data transmitted to Earth later, Hubble’s officials are starting to think about its future, and it’s not a straightforward question.

 NASA: Hubble alongside Discovery

NASA: Hubble alongside Discovery

Hubble’s lifespan “is the biggest question we keep getting from people, because everybody is used to something on Hubble breaking every five years,” explained Jason Kalirai, a researcher at the Space Telescope Science Institute in Baltimore.

Even though it’s getting old, Kalirai said NASA’s Goddard Space Flight Center engineers are doing a wonderful job managing the telescope’s systems. For now, they estimate that Hubble will keep orbiting in Low Earth Orbit, exploring the mysteries of the universe until, at least, its 30th anniversary.

When Hubble eventually does break down, does NASA actually have a plan to replace it? Of course! The James Webb Space Telescope (JWST) was first scheduled to launch in 2011, but its launch was put off until October 2018. Unfortunately, the project isn’t just delayed, it’s also vastly over budget.

The JWST is a much bigger and more powerful space telescope than Hubble; it’s as big as a tennis court with a 6.5-meter-diameter primary mirror, compared to the 2.4 meter diameter mirror on the Hubble. Overall, the increased the JWST’s collecting area up to seven times more than Hubble.

When finally launched, the JWST will be placed 1.5 million km from the surface of the Earth, “The JWST … isn’t going to look back towards Earth, it’s going to look out into space and take these brilliant pictures and send them back,” explained Industry Minister James Moore. “So we’ll have a view into space that no other human-beings have ever seen before, and that’s incredibly exciting.”

 NASA: Outside the enormous mouth of NASA's giant thermal vacuum chamber, called Chamber A, at Johnson Space Center in Houston, engineers and technicians prepare the chamber for testing the James Webb Space Telescope.

NASA: Outside the enormous mouth of NASA's giant thermal vacuum chamber, called Chamber A, at Johnson Space Center in Houston, engineers and technicians prepare the chamber for testing the James Webb Space Telescope.

Canada is part of the three major contributors to get the JWST into orbit: NASA and the European Space Agency make up the other two. “What if I told you we were going to build a new space telescope? What if I told you Canada was helping to build that telescope?” asked Canadian astronaut Jeremy Hansen.

The Canadian Space Agency is providing JWST a Fine Guidance Sensor (FGS) as well as the Near-InfraRed Imager and Slitless Spectrograph (NIRISS), one of the Webb’s four science instruments. Both were designed, built and tested by the Canadian Space Agency.

What is an NIRISS? The light we can see is composed of what is called visible light. There are, however, many other kinds of light, such as infrared light. For instance, infrared light can offer astronomers different sources of information. Many celestial objects, like brown dwarfs and enormous red giant stars, emit mostly infrared light.

NIRISS will also have unique capabilities to find the earliest and most distant object of the Universe, such as the first galaxies ever formed.

The integration of FGS and NIRISS required CSA to add $2.6 million to its contract with COM DEV International Ltd., where the FGS and NIRISS are built and tested.

The Canadian contribution guarantees Canadian astronomers a slice of the action where the observations of space and time by the Webb telescope are concerned. “It’s going to open up a whole new world of scientific discoveries and new ways of looking at the future … It’s going to be a fantastic time of discovery for all Canadians,” said Industry Minister James Moore.

 

Federal Budget 2015: ISS Commitment Extended to 2024

On April 21, 2015, Minister of Finance Joe Olivier presented the 2015 Canadian federal budget to the Canadian House of Commons.

The budget assumed Canada’s implication in the International Space Station (ISS) until 2024. After previous commitments by NASA and the Russian Space Agency (Roscosmos), both the primary contractors of the station, Canada’s decision to extend its participation in the ISS until 2024 was confirmed.

 NASA

NASA

As a consequence of this, Canada is responsible for 2.3% of the operating costs of the United States-led segment. That means Canada has the rights to use 2.3% of these module’s resources. For comparison, Japan holds 12.8% of the segments’ rights; European Space Agency (ESA) 8.3%; and NASA pays the remaining 76.6%. The Russians finance their own segments.

Japan and ESA officials said they are thinking of reducing their station’s holding rights. Also, neither has yet confirmed their commitment to the ISS beyond 2020. Does that mean Canada will take greater responsibilities within the space station?

 

SpaceX CRS-6: Still No Cigars

SpaceX is a private company that helps to resupply the International Space Station (ISS) with basic necessities and science-related equipment.

On April 14, 2015, they launched their 6th unmanned Dragon cargo spacecraft to resupply the ISS, something that needs to be done each 90 days or so. This mission, named SpaceX CRS-6, was postponed multiple times. To be honest, I can’t remember one time when a SpaceX launch wasn’t delayed.

SpaceX likes to try risky and out-of-the-ordinary things. For a second time, they tried to land the first stage of their Falcon 9 rocket on a drone barge, a feat that nobody has ever accomplished.

The first attempt was almost successful, but the first stage ran out of hydraulic fluid causing it to explode. The Falcon 9 rocket has two stages: the first one, also the biggest one, is on the bottom and powered by nine SpaceX Merlin engines. The second stage carries the Dragon spacecraft and is powered by one Merlin engine.

The launch was a success, and then the first stage separated from the second stage about three minutes after launch, as expected, and began falling back toward the landing platform.

After the considerable challenge that is landing a rocket, SpaceX wants the first stage to stand up on the barge.

Take a look at what happened after the second attempt.

Close, huh? The 14-story booster steadied for a brief moment on the “autonomous spaceport drone ship,” as SpaceX likes to call it, before toppling over and causing an impressive explosion caused by an issue with an engine throttle valve.

Everything else went perfectly. Astronaut Samantha Cristoforetti, onboard the ISS, grappled the Dragon spacecraft with Canadarm2 on April 17. The payload, carrying more than 4,300 pounds of supplies and other material to support multiple scientific experiments, was delivered successfully to the ISS.

SpaceX’s next attempt to land the first stage of another Falcon 9 rocket will be in June.

R.I.P.: NASA’s MESSENGER Spacecraft

Since March 2011 NASA’s MESSENGER spacecraft has been cruising in Mercury’s orbit. It became the second mission to reach Mercury, the first planet starting from the Sun, after Mariner 10’s 1975 flyby.

 NASA

NASA

MESSENGER, acronym for MErcury Surface, Space ENvironment, GEochemistry, and Ranging, helped a lot in characterizing the chemical composition of Mercury’s surface, studying the nature of Mercury’s magnetic field, determining the size and state of the core, and solved many other unprecedented scientific mysteries about the smallest of the four rocky planets. In four years of orbit, it has sent over a quarter of a million images of Mercury back to Earth.

Launched on August 3, 2004, MESSENGER conducted its final orbital manoeuvre on April 6, 2015. It ran out of fuel quickly as the Sun was close by and constantly changing MESSENGER’s orbit.

This lack of propellant lead to the death of the spacecraft: MESSENGER was expected to crash into the planet’s surface in late April or early May. “The sun is pulling on it. The planet is pulling on it. It’s just physics. It has to crash,” said Thomas Zurbuchen of Michigan’s University.

This was inevitable, and the scientists who were part of the MESSENGER group understood it even at the dawn of the mission’s planning. They even took advantage of it! During its hard-to-control orbit, the Mercury-exploring spacecraft went as low as 5km from the surface of the planet, sending back incredibly high-resolution pictures.

MESSENGER successfully completed its mission: to unmask the secrets of Mercury. “We’re at the end of a really successful mission, and we can’t do anything anymore to stop it from doing what it naturally wants to do,” continued Thomas Zurbuchen.

On April 30, 2015, NASA’s MESSENGER spacecraft crashed into Mercury’s surface at 3.91 km/second, after traveling 7.8 billion kilometres over 11 years.